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Abstract. The wind field leaves its fingerprint on the rotor response. This fact can be exploited to use the rotor as a sensor: by

looking at the rotor response, in the present case in terms of blade loads, one may infer the wind characteristics. This paper

describes a wind state observer that estimates four wind parameters, namely the vertical and horizontal shears and the yaw and

upflow misalignment angles, from out-of-plane and in-plane blade bending moments. The resulting observer provides on-rotor

wind inflow characteristics that can be exploited for wind turbine and wind farm control. The proposed formulation is evaluated5

by extensive numerical simulations in turbulent and non-turbulent wind conditions using a high-fidelity aeroservoelastic model

of a multi-MW wind turbine.

1 Introduction

The wind blowing over a wind turbine rotor leaves its own specific fingerprint on the machine response. If this information is

rich enough and if the wind turbine response can be measured (for example in terms of loads), then one may think of turning10

the rotor into a wind sensor and use it to infer the wind inflow.

Measurements of the rotor inflow during operation are attractive for a number of reasons, as they may find a wide range

of applications. For example, information on the wind speed at the rotor disk is typically useful for wind turbine control, as

controller behavior is often scheduled as a function of wind speed. In addition, knowledge of the wind direction with respect

to the rotor is necessary not only to maximize energy harvesting, but also because operating with excessive misalignment15

increases loading. Wake redirection strategies (Fleming et al., 2014; Jimenez et al., 2010) deliberately point the rotor away

from the wind, with the goal of deflecting the wake and reducing its interaction with downstream machines, a control strategy

that again requires good knowledge of the wind direction in order to be implemented. Upflow can change significantly in

complex terrain applications and, if known, it can be used to reduce loading. The presence of an impinging wake, shed from

an upstream wind turbine, may result in high horizontally sheared flow at the rotor disk. Turbulence intensity (TI) and vertical20

shear may give indications on the characteristics of the atmosphere, information that can be used for optimizing wind turbine

and wind farm control behavior. More in general, by turning each wind turbine in a wind sensor capable of measuring the local

inflow characteristics, one may build a more complete picture of the wind flow within a power plant, providing information

that may possibly have a variety of uses.
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Unfortunately, high quality information of the wind inflow is in general difficult to obtain. On board wind turbines, wind

speed is typically measured by cup or sonic anemometers, while direction is provided by wind vanes. These sensors invariably

suffer from a number of disturbances, such as the presence of the nacelle, blade passing and wake-induced flow deformation.

Although most of these effects can be mitigated by the use of calibrated transfer functions, filtering and ad hoc processing of

the raw measurements, all these sensors provide only local information at the specific point in the flow where they are installed.5

For control applications, it is clear that rotor-equivalent information is in general more appropriate than local data, as in fact

what determines the overall rotor response is what is felt by the whole rotor rather than what takes place at a specific point.

Additionally, certain wind characteristics can only be defined over a rotor disk and do not have point-wise equivalents, as for

example shears. Met-masts, being equipped with multiple wind sensors away from the rotor, do not suffer from some of these

issues. However, the problem of mapping the information from a met-mast to the rotor disk of a wind turbine is in general10

very difficult to solve, and it will clearly be always prone to possibly severe inaccuracies. With LiDARs (light detection and

ranging), laser-based sensing technology is rapidly becoming a game changer, and other remote sensing solutions are also very

promising. While their potential is clearly very real and will probably have a deep impact on wind energy technology, these

devices are still not in widespread use, mostly because of cost, reliability, availability and life-time issues.

In this scenario, wind sensing by using the rotor response seems to offer an attractive alternative. In fact, any wind property15

estimated from the rotor response will be non-local and rotor-effective, in contrast to local sensors. In addition, this approach

provides measurements directly at the rotor disk, this way avoiding the need for mapping flow characteristics from one point

to another.

The rotor-effective wind speed estimator (Van der Hooft and Engelen, 2004; Soltani et al., 2013) is one of the first examples

of the use of the rotor response for estimating wind characteristics. In that case, the idea is to use the dynamic torque balance20

equation: based on a map of the aerodynamic torque (or power) of the rotor over the operating envelope of the machine, one

may solve this equation in terms of the unknown wind speed, assuming that the other operational parameters (rotor speed, pitch

setting, electrical torque) are measured at each instant of time.

This idea was first generalized by Bottasso et al. (2010), which introduced the concept of the rotor as an anemometer. Instead

of using the single torque balance, additional equations of dynamic equilibrium of the machine were used, including the tower25

and blade degrees of freedom. As multiple equations are now available, multiple wind states can be estimated in addition to

wind speed. Although attractive, the need to estimate some wind turbine states resulted in a fairly complicated formulation.

A much simpler approach was developed later on in Bottasso and Riboldi (2014). In that case the idea was not to use the

equations of dynamic equilibrium, but rather to consider the steady state response of the machine. Specifically, the approach

exploited the fact that steady wind conditions are associated with a periodic response of the wind turbine. Therefore, a load-30

wind model was derived linking the 1×Rev harmonics of the blade out and in-plane bending moments with the wind vertical

shear and yaw misalignment. A simple blade flapping model was used to derive and justify the structure of the model, while, for

accuracy, its actual coefficients were obtained by identification from a higher fidelity aeroservoelastic model of the wind turbine

or directly from field tests. A validation of the observer using field data was described in Bottasso and Riboldi (2015) using the

Control Advanced Research Turbine (CART3) (Fleming et al., 2011; Bossanyi et al., 2009). Results indicated a significantly35
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higher correlation of the observer results with respect to a met-mast, assumed as ground truth, than for the on-board nacelle

anemometer and wind vane. Notwithstanding these very promising results, the same study also showed a marked sensitivity of

the results on the wind upflow angle, indicating the probable need for a richer description of the wind field.

Following the idea described in Bottasso et al. (2010), an estimator based on a linearized wind turbine model was proposed

in Simley and Pao (2014). The formulation used generator speed, fore-aft nacelle acceleration and collective, cosine and sine5

components of the blade out-of-plane bending moments to estimate, by a Kalman filter, the equivalent wind speed together with

the linear vertical and horizontal shears. That study demonstrated the performance of the formulation using non-turbulent wind

fields that were exactly parameterized by the assumed wind states. However, the effects of unmodeled wind characteristics (as

for example turbulence and yaw or upflow misalignments) were not considered.

The concept of the wind turbine as a wind sensor was recently extended to the detection of wake impingement in Bottasso10

et al. (2015, 2016), where loads are used to detect if and where a wake shed by an upstream wind turbine interferes with the

rotor.

Motivated by the very promising validation results in the field, the present paper extends and improves the formulation of

Bottasso and Riboldi (2014), with the goal of addressing some of its weaknesses.

First, extensive numerical experiments have shown that the load-wind model on which the estimator is based must consider15

at least four wind states instead of two, i.e. the two yaw misalignment and upflow angles, as well as the two horizontal and

vertical shears. These four states, together with the mean rotor-equivalent speed, represent the lowest order full approximation

of the wind inflow at the rotor disk: the two angles give the orientation of the mean wind vector with the rotor axis, while mean

speed and two shears describe a tilted planar (or mixed linear-exponential, depending on the type of shears considered) inflow.

All of these states leave significant signatures in the low frequency response of the rotor. Therefore, failure to include one of20

them in the model will invariably create inaccuracies in the others.

Second, the paper shows that estimators of these four states should be limited to the use of the 1×Rev response. In fact,

although 2×Rev harmonics are indeed excited by the four states, these same harmonics are also very significantly excited by

turbulence, i.e. by higher order wind states (describing a non-planar inflow distribution over the rotor disk). As it is not possible

to distinguish the part of the 2×Rev response caused by the four wind states from the part caused by turbulence, inclusion of25

this higher order response will result in significant pollution of the estimates.

Third, the paper compares both a linear and a nonlinear (quadratic) load-wind model. Both models are scheduled with

respect to wind speed, in order to account for the different characteristics of a wind turbine in its wind speed operating range.

Numerical experiments show that the two are very similar in performance, with a small improvement in accuracy for the

nonlinear model over the linear one.30

Fourth, experience has shown that angles (yaw misalignment and upflow) are significantly more difficult to estimate than

shears. The paper explains the reason for this behavior from two different perspectives. From a mathematical point of view, an a

priori analysis based on the Singular Value Decomposition (SVD) demonstrates that angles have a lower level of observability

than shears, implying that any small error or perturbation (in the model, in the measurements, in the numerical solution, etc.)

will be significantly amplified during the model inversion necessary for the estimation of the wind states. From a physical point35
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of view, this is also easily explained in terms of sensitivity of angle of attack changes at the blade section to wind state changes.

As angles of attack (and hence loads) change less in response to angle changes than to shear changes, then angles are harder to

estimate than shears when looking at rotor loads.

Finally, the paper demonstrates the performance of the estimator by extensive numerical simulations performed with a

high fidelity aeroservoelastic model of a multi-MW wind turbine. The numerical results illustrate the excellent ability of the5

proposed formulation to follow rapid fluctuations of shears. The same results also show a very interesting behavior of the angle

estimators. In fact, although angle estimates are indeed in general polluted by oscillations that depend on turbulence level,

their mean errors are significantly low. An analysis that considers the probability distributions of wind speed and turbulence

intensity at a given site, shows that the expected average inaccuracy of the angle estimates is remarkably low, i.e. less than one

degree. This means that angles, although apparently oscillatory on short time horizons, can be followed quite precisely in their10

mean value changes.

The paper is organized according to the following plan. Section 2 presents the formulation of the observer, first introducing

load-wind models that relate wind states and blade harmonics, then describing the identification of the model parameters

by a system identification approach, and finally inverting the model to give wind states when loads are measured. A first

set of simulations is used to motivate the limitation of the load vector to the 1×Rev harmonics. To this end, the simulation15

environment is briefly introduced together with the aeroservoelastic mathematical model of a wind turbine, used throughout

the entire work to support all numerical experiments. Section 3 is devoted to an a priori observability analysis of the wind

parameters using the SVD, followed by a concise summary of the expected observer behavior given in §3.2. Extensive testing

of the proposed method in non-turbulent and turbulent wind conditions is given in Section 4. Finally, Section 5 completes the

manuscript, listing the main conclusions and giving possible further improvements to the methodology.20

2 Formulation

2.1 Wind anisotropy and its parameterization

The development of the proposed wind inflow observer is inspired by the idea of using the wind turbine as an anemometer. In

this sense, wind is not only the source of energy to be harvested but also one of the principal factors affecting the wind turbine

response. Specifically, the present observer is based on the lowest load harmonics. Although other response indicators could25

be used in principle, as for example accelerations, loads are considered in this work because they are now often measured on

board modern large wind turbines for enabling load-feedback control, and load sensors will probably be standard equipment

available on most future machines.

In order to understand the connection between blade loads and wind characteristics, consider now two different constant-

in-time wind fields. A first wind field is axially symmetric with respect to the rotation axis of the wind turbine rotor, while30

the second is not, both in magnitude and/or direction. In the second –anisotropic– case, differences in speed and/or direction

over the rotor disk may be due to wind shears (both vertical and horizontal) and/or misalignments with the wind direction

(both due to yawed flow and upflow caused by rotor uptilt, terrain orography, etc.). In the axially symmetric case, the angle of
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attack experienced by the blade sections during their azimuthal travel over the rotor disk will be constant; hence, the resulting

aerodynamic loads will also be constant. In the non axially-symmetric case, any anisotropy in the wind will cause periodic

fluctuations in the angle of attack at the blade sections, and hence periodic loads. Amplitude and phase of such loads will

depend on the wind field at the rotor disk, and on the aeroelastic characteristics of the rotor blades. Therefore, amplitude and

phase of the periodic loads carry information on the wind anisotropy at the rotor disk. This fact can be readily verified with5

simplified mathematical models of a rotating blade in an anisotropic wind field, as for example the classical flapping and

lagging blade model developed in Eggleston and Stoddard (1987). Using such a model, Bottasso and Riboldi (2014) suggested

a linear structure for a blade response-based observer of cross-flow and vertical shear.

In this work, the wind field anisotropy is parameterized using four variables (termed wind states in the following): the vertical

shear exponent κv and horizontal linear shear κh, and the two angles φ and χ, measuring respectively the yaw misalignment10

and upflow. These quantities are collected in the wind state vector θ, defined as

θ = (φ, κv, χ, κh)T . (1)

More complex wind distributions over the rotor disk might be modelled using higher order terms. However, such local fluctu-

ations would manifest themselves in higher Rev harmonics, complicating the estimation process.

The wind states are defined with respect to a nacelle-attached frame of reference with origin at the hub, made of three15

mutually orthogonal unit vectors x, y and z. The x vector is parallel to the rotor axis and pointing downwind, z points upward

in the vertical plane, while y is defined according to the right-hand rule. The wind vector V is expressed in terms of its

components in the nacelle frame as V = (u, v, z)T . The wind speed at the rotor disk W (y,z) = |V | is readily computed as

W (y,z) = V

((
H + z

H

)κv
+
y

R
κh

)
, (2)

where V is the wind speed at hub height H , while R is the rotor radius. The three wind velocity vector components are then20

expressed as

u(y,z) =W (y,z)cos(φ)cos(χ), (3a)

v(y,z) =W (y,z)sin(φ)cos(χ), (3b)

w(y,z) =W (y,z)sin(χ). (3c)

Notice that, because of the definition of the nacelle-attached reference frame (x,y,z), a horizontal wind results in an upflow25

equal to the negative of the nacelle uptilt angle. This is useful for separating the effects of gravitational loads from aerodynamic

ones, as shown later on. To ease the interpretation of the results, all computed wind states reported in the numerical examples

of the rest of this paper were mapped to a frame of reference similar to the nacelle-attached one, but whose x unit vector is

horizontal with respect to the ground instead of being aligned with the rotor axis. Figure 1 illustrates the meaning of the four

wind states.30

Two different wind fields are considered in the following. In the fully-parameterized case, the wind field is completely

defined at each instant of time by V and θ. On the other hand, a more realistic wind field is generated using the Kaimal
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Figure 1. Definition of the four wind states used for parameterizing the wind field over the rotor disk.

turbulent wind model implemented in the open-source code TurbSim (Jonkman and Kilcher, 2012). In the latter case, the

wind field can be considered as the superposition of a fully-parameterized wind with turbulent fluctuations possessing specific

space-time characteristics. Given a wind turbine operating in a turbulent wind field, goal of the proposed observer is then to

estimate online a wind state θ that approximates the turbulent wind at each instant of time.

2.2 Blade load harmonics5

Under the effects of a steady anisotropic wind, the response of a stable wind turbine converges to a periodic motion. In such a

regime, a generic blade load m can be expanded in Fourier series as

m(ψ) =m0 +
∞∑

n=1

(mnc cos(nψ) +mns sin(nψ)) , (4)
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where ψ is the azimuth angle, subscripts (·)nc and (·)ns refer to the n×Rev cosine and sine components, respectively, whereas

m0 is the 0th harmonic constant amplitude. For convenience, signal harmonics are collected in a vector

h= (m0, m1c, m1s, m2c, m2s, . . .)
T
, (5)

which can be computed by demodulating the blade load signal m(ψ) or, for rotors with at least three blades, by using the

Coleman Feingold (or multi-blade coordinate) transformation (Coleman and Feingold, 1958; Bottasso and Riboldi, 2014). By5

using the latter method, harmonics at the n×Rev frequency can be computed as





mnc

mns



=

2
3


 cos(nψ(1)) cos(nψ(2)) cos(nψ(3))

sin(nψ(1)) sin(nψ(2)) sin(nψ(3))








m(1)

m(2)

m(3)




, (6)

where m(i) and ψ(i) are the ith blade moment and azimuth angle, respectively. Similar relationships exist also for a higher

number of blades, but not for a smaller one. It can be shown that this way harmonics at the i×Rev are transformed into 0×Rev

components, whereas the other harmonics are either canceled out or transformed into multiples of the number B of blades.10

This implies that it is always necessary to filter around and above the B×Rev frequency after having applied the Coleman

transformation. Adaptive filtering can be used to follow the rotor speed changes caused by variations in the wind speed.

Both out-of-plane (superscript (·)OP) and in-plane (superscript (·)IP) blade bending harmonic components up to a desired

Rev frequency are considered and collected in a vectorm, defined as

m=
(
mOP

1c , m
OP
1s , m

IP
1c , m

IP
1s , m

OP
2c , m

OP
2s , m

IP
2c , m

IP
2s , . . .

)T
. (7)15

2.3 Wind state observer

2.3.1 Modeling of the load-wind relationship

The formulation of a wind state observer necessitates of a model expressing the dependency of the loads on the wind conditions,

and in particular of the load harmonicsm on the wind state vector θ. To this end, consider first a wind turbine model expressed

by a set on nonlinear differential equations together with their output relations:20

f
(
x, ẋ,u(θ,V,%)

)
= 0, (8a)

y = g
(
x, ẋ,u(θ,V,%)

)
, (8b)

where x is the state vector, u the input vector, whereas y indicates the output vector (containing, in this case, the blade bending

moments). The input vector only includes the exogenous disturbance represented by the wind parameters θ, by the wind speed

V and the air density %, because the presence of a feedback controller (usually in the form of a pitch-torque controller) can be25

considered to be included in the definition of the system model f(·).
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Under a steady input u, the response of system (8a) in terms of its states converges to a periodic solution, which can be

described through a truncated Fourier expansion as

x= x0 +
N∑

n=1

(xnc cos(nψ) +xns sin(nψ)) . (9)

Inserting (9) into (8a) and collecting all terms at the same frequency (a procedure termed harmonic balance), one can compute

xnc and xns, which clearly will depend on θ, V and %. Finally, the harmonics xnc and xns can be inserted into the output5

Eq. (8b), yielding the desired relationship between load harmonics and wind parameters:

m=M(θ,V,%). (10)

An example of this derivation for a simplified flapping blade model can be found in Bottasso and Riboldi (2014). In principle,

the resulting input-output relationship should also include the dependency on other parameters, such as blade pitch and rotor

speed, as shown for example in Simley and Pao (2014). However, all these quantities depend in turn on the environmental and10

operating conditions according to the particular regulation strategy adopted by the on-board controller. Therefore, in this work

the model is assumed to depend only on θ, V and %. Vector θ is to be estimated with the proposed observer, while V , which

is a scheduling parameter for the model, can be either measured or observed using a rotor-equivalent wind speed estimator

(Soltani et al., 2013; Simley and Pao, 2014; Bottasso et al., 2015, 2016).

It is important to emphasize that this approach, which leads to a white box model, may suffer from inaccuracies. In fact any15

mismatch between model (8) and the reality will inevitably pollute the input-output relationship (10). To address this problem,

one may calibrate some of the parameters of model (8) based on available measurements. This procedure, carried out using

parameter identification techniques (Jategaonkar, 2006), leads to a gray box model.

In this paper, a third approach is used, which is entirely based on system identification. In this case, the desired input-output

relationship between loads and wind states is considered as a black box, which is identified directly from measurements of m20

and θ. This way, the need for an analytical model is bypassed completely. Clearly, the model structure has to be simple enough

to be easily identified, but at the same time it should be able to describe the input-output relationship with the necessary level

of precision. The advantage of avoiding the use of a white or gray model is paid in terms of the need for a set of measurements

that is rich and complete enough to enable the identification of the relationship of interest.

The data set for the identification of the black box model can be obtained either by simulation or by measurements performed25

in the field. The former approach, which is also the one that was used for the present work, is relatively simple, because in

fact in a simulation environment one can readily measure all necessary quantities (loads and wind states). In contrast to this

simplicity, it is clear that here again any mismatch of the simulation model with respect to reality will affect the quality of the

identified input-output model. While this is in principle a possible drawback, one should not forget that the present approach

only uses the very lowest harmonics (typically only the 1×Rev) of the response. State-of-the-art aeroservoelastic codes used for30

the design and certification of wind turbines are typically quite accurate in this frequency range, and many of these codes have

been successfully validated in their ability to provide good quality estimates of the loads when compared with experimental

data. An additional remark on this modeling approach is in order: it is clear that identifying a black box model based on the
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outputs of a simulation is in a sense akin to the extraction of a white box model from the simulation model itself. However,

given the level of complexity of modern comprehensive aeroservoelastic codes, the direct extraction of the necessary input-

output relationship by manipulation of the underlying equations is hardly doable in practice, especially when working with

legacy codes.

A second possible approach is to use field measurements. In this case the machine should be equipped with load sensors, as5

well as a met-mast, a LiDAR or other flow sensors to measure wind states. Each of these techniques implies its own hypothesis

(e.g., frozen turbulence in the case of flow measurements performed away from the rotor disk), each is limited by its own

specific inherent accuracy, and each is affected by errors and disturbances. While this approach is certainly possible and it was

in fact successfully demonstrated in Bottasso and Riboldi (2014), it was not pursued further in the present work.

2.3.2 Linear model10

Inspired by Eq. (10), a linear input-output model can be expressed as

m= F (V,%)θ+m0(V,%), (11a)

= Tθ, (11b)

where F andm0 are the model coefficients, while T (V,%) = [F (V,%), m0(V,%)] and θ = (θT , 1)T .

Matrix F is the sensitivity of the harmonics with respect to the wind states and depends on the operating condition of the15

machine through the wind speed V and the air density %. Vector m0 is a term accounting for gravity-induced loads. In fact,

when θ = 0, the wind field is a constant-over-the-rotor-disk flow parallel to the rotor axis, which only causes a 0×Rev load

response and therefore it does not contribute tom. Similarly, inertial effects due to the rotor spinning with an angular velocity

Ω also generate only 0×Rev loads, and hence do not contribute to Eq. (11). Vectorm0 can be expressed as

m0 = g+ qAc(V,%). (12)20

The first term, g, accounts for in-plane and out-of-plane gravity-induced loads, the latter being caused by blade precone,

prebend and rotor up-tilt. The second term, qAc, is a gravity-induced load due to the rotor deformation caused by aerodynamic

loads, which therefore can be nondimensionalized accordingly. For the same reasons noted above, also this term in general

depends on V and %.

Separating the effects of gravity from aerodynamic-induced loads allows for the correction of air density changes. This is25

important in practise because density, being dependent on temperature, undergoes significant fluctuations in the field, thereby

affecting load measurements. The split of gravity-induced terms in constant and aerodynamically-caused ones is also important,

as it highlights the variability of the latter term with the operating condition.

9
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The unknown matrix of coefficients T can be computed collecting multiple observations for the moments m(i) and inputs

θ
(i)

, where (·)(i) indicates the ith of Nexp available observations. Grouping the measurements in matrices

M =
[
m(1), m(2), . . . , m(Nexp)

]
, (13a)

Θ =
[
θ

(1)
, θ

(2)
, . . . , θ

(Nexp)
]
, (13b)

the input-output relationship (11) can be written collectively for all observations as5

M = TΘ. (14)

Finally, matrix T is readily estimated in a least-squares sense as

T =MΘT
(
ΘΘT

)−1

. (15)

The problem is solvable if and only if matrix Θ has a full rank. In this sense, the condition number of matrix ΘΘT gives an

indication of the identifiability of a model given a set of measurements. If the condition number is excessively high, then the10

problem is ill posed and the data set has to be enriched/modified.

As previously noted, the input-output model should be scheduled in terms of the wind speed V and air density %, as the

model coefficients depend on the operating condition of the machine. To this end, a piece-wise linear scheduled model can be

expressed as

m=
NnodeV∑

k=1

Nnode%∑

w=1

F k,wnk,w(V,%)θ+m0k,wnk,w(V,%) =
NnodeV∑

k=1

Nnode%∑

w=1

T k,wnk,w(V,%)θ, (16)15

where the wind speed and air density ranges have been discretized by introducing NnodeV wind speed nodes and Nnode%

density nodes, while F k,w and m0k,w are the model coefficient nodal matrices, grouped together as T k,w = [F k,wm0k,w].

Finally, two-dimensional shape functions are noted nk,w(V,%). The scheduled model (16) can be written in a more compact

form as

m= T̂ θ̂(V,%) (17)20

where θ̂(V,%) = N̂(V,%)θ and

T̂ =
[
T 1,1, T 1,2, . . . , T k,w, . . . , TNnodeV ,Nnode%

]
, (18a)

N̂ =
[
n1,1(V,%)I, n1,2(V,%)I, . . . , nk,w(V,%)I, . . . , nNnodeV ,Nnode% (V,%)I

]T
, (18b)

being I an identity matrix of suitable dimensions.

Samples of the wind states and associated loads are now collected atNexp different operating conditions, each corresponding25

to its own wind speed V (i) and air density %(i). The ith load vector and wind state vector are noted m(i) and θ̂(V (i),%(i)),
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respectively. Both loads and wind states are collected into matrices as

M̂ =
[
m(1), m(2), . . . , m(Nexp)

]
, (19a)

Θ̂ =
[
θ̂(V (1),%(1)), θ̂(V (2),%(2)), . . . , θ̂(V (Nexp),%(Nexp))

]
, (19b)

leading to the overall system

M̂ = T̂ Θ̂. (20)5

Finally, the matrix of unknown coefficients T̂ is computed in a least-squares sense as

T̂ = M̂Θ̂
T
(
Θ̂Θ̂

T
)−1

. (21)

The problem is well posed if the solving least-squares matrix, Θ̂Θ̂
T

, is non-singular. One must clearly ensure that samples

adequately cover all wind speed intervals, in order to ensure the identifiability of all nodal matrices F k,w andm0k,w.

An example of the typical behavior of the model coefficients is given in Fig. 2, for the wind turbine described later on in10

this paper. The figure reports ∂mOP
1c /∂κv (left) and ∂mIP

1s /∂χ (right) as functions of V and %. There is a distinctly different

behavior with respect to wind speed of the load sensitivities in regions II (partial load) and III (full load). The rapid changes in

the transition region II 1
2 call for a suitable refinement of the node spacing in this regime. In general, the situation with respect

to density is simpler, with small departures from a linear behavior only in the transition region.
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Figure 2. Behavior of two load sensitivities as functions of wind speed V and air density %: sensitivity of out-of-plane 1×Rev cosine moment

with respect to vertical shear κv (left) and in-plane 1×Rev sine moment with respect to upflow χ (right).

2.3.3 Nonlinear model15

The assumption of linearity in the input-output relationship (10) might lead to inaccuracies. To correct for these potential

effects while limiting model complexity, a model with an assumed degree of nonlinearity is formulated as

m= FNLθNL +mNL0 . (22)

11
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The nonlinear wind state vector θNL contains, in addition to the elements of θ, also their nonlinear combinations θNLj up to a

given order p, where

θNLj =
∏

i

θi
αi s.t.

∑

i

αi ≤ p, (23)

θi being the ith element of the linear wind state vector θ. For p= 2, which is the case considered here, the nonlinear wind state

vector contains 14 terms:5

θNL = (φ, κv, χ, κh, φκv, φχ, φκh, κvχ, κvκh, χκh, φ2, κ2
v, χ

2, κ2
h)T . (24)

As the nonlinear model (22) is linear in the unknown coefficients FNL andmNL0 , its identification is formally identical to the

one of the linear model, both for the unscheduled and the scheduled cases. However, as more coefficients are present, one has

to check here again that the data set is complete enough to guarantee the well posedness of the problem.

2.3.4 Wind turbine simulation model10

In this work, an aeroservoelastic simulation model is used for representing the dynamic behavior of a wind turbine in all

different scenarios of interest. The model represents a horizontal axis wind turbine with a rotor of 93 m of diameter with an

uptilt of 4.5 deg, a hub height of 80 m and a rated power of 3 MW. The wind speeds at cut-in (VCI), rated power (VRP) and

cut-out (VCO) are respectively equal to 3, 12.5 and 25 m/s. A rather wide transition region II 1
2 extends from 9 to 12.5 m/s. The

cut-in rotor speed is equal to 5.2 RPM, whereas the rated one is equal to 15 RPM. Both side-side and fore-aft tower frequencies15

ftower are equal to 0.3 Hz. The first blade flap-wise frequency fflap varies between 0.9 Hz at cut-in and 1 Hz at rated rotor

speed. Finally, the first blade edge-wise mode fedge is at around 1.5 Hz.

The aeroservoelastic model of the machine is developed using the finite element multibody code Cp-Lambda (Bauchau

et al., 2003; Bottasso and Croce, 2006). The model includes flexible blades, tower and drive-train, implemented with geo-

metrically exact nonlinear beam models (Bauchau, 2011). Rotor speed-dependent mechanical losses are considered within the20

drive-train-generator model, and compliant foundations are used to connect the tower base to the ground. The aerodynamics is

rendered through the classical blade element momentum theory (BEM) and considers hub- and tip-losses, dynamic stall and

unsteady corrections. The model is completed by an active pitch/torque controller, implemented as a speed-scheduled linear

quadratic regulator (LQR) (Bottasso et al., 2012; Riboldi, 2012). Additionally, the pitch and torque actuators are modeled as

second and first order systems, respectively. The total number of degrees of freedom included in the model is about 2500.25

Finally, the model is subjected to wind time histories generated by the code TurbSim (Jonkman and Kilcher, 2012).

2.3.5 Load-wind relationship in steady conditions

To test the performance of the linear and nonlinear models, the wind turbine was simulated in a variety of different operating

conditions. Fully parameterized steady winds were generated at speeds V = {3, 4, 5, 6, 7, 8, 9, 11, 15, 19}m/s, where for each

12
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different wind speed all possible combinations of the following wind parameters were considered:

φ= {−16,−12,−8,−4, 0, 4, 8, 12, 16} deg, (25a)

κv = {0.0, 0.1, 0.2, 0.3, 0.4}, (25b)

χ= {0, 4, 8, 12} deg, (25c)

κh = {−0.1,−0.05, 0.0, 0.05, 0.1}. (25d)5

Loads measured on the aeroelastic simulation model were decomposed in their harmonics at the 1×Rev and 2×Rev using the

Coleman transformation and used, together with the corresponding wind states, for identifying linear and nonlinear models.

From the full range of tests performed, Fig. 3 shows two representative examples at a wind speed of 7 m/s, illustrating the

match between the measurements obtained on the wind turbine simulation model (taken as ground truth) and the outputs of

the identified models. The ground truth is reported with markers, the linear model with solid lines and the nonlinear one with10

dashed lines. Figure 3 shows on the left mOP
1c as a function of φ, for different values of κv and for κh = 0.0 and χ= 4 deg. On

the right, Fig. 3 shows mOP
1s as a function of χ, for different values of κh and for κv = 0.0 and φ= 0 deg. Both moments are

nondimensionalized with respect to their own maximum absolute values.
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Figure 3. Comparison between measured and predicted harmonics, for the linear model (solid thick lines) and the nonlinear one of order

2 (solid thin lines). Normalized 1×Rev cosine (left) and sine (right) out-of-plane moment components are shown for different wind state

variables.

The figures show that both models are capable of capturing the relevant behavior of the harmonics with respect to wind

states. The relationships appear to be linear, with only very minor nonlinearities. These analyses also graphically illustrate15

the sensitivity of the loads with respect to the wind parameters. As expected, even though all parameters have a certain effect

on all loads, cosine harmonics are mainly influenced by the couple {φ, κv}, whereas sine harmonics by {χ, κh}. Similar

considerations can be derived for the in-plane harmonics, not shown here for the sake of brevity.
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On the other hand, the 2×Rev harmonics have a markedly different behavior, as shown in Fig. 4. The plots report the

nondimensional out-of-plane 2×Rev cosine term on the left, and the in-plane 2×Rev sine term on the right, as functions of φ

and for varying κv , with κh = 0.0 and χ= 4 deg. Given the clear nonlinearity of the relationships, only the nonlinear model is

able to capture the correct trends of these higher harmonics with respect to the wind states.
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Figure 4. Comparison between measured and predicted harmonics for the nonlinear model of order 2 (solid thin lines). Normalized out-of-

plane 2×Rev cosine (left) and in-plane 2×Rev sine (right) are shown for different wind state variables.

2.3.6 Choosing the number of harmonics5

The previous analysis performed in steady wind conditions has shown that the 1×Rev harmonics exhibit a largely linear

behavior with respect to the wind states, while the 2×Revs exhibit marked nonlinearities. In order to understand the behavior

of the models in more realistic conditions, simulations were conducted in turbulent winds. In particular, it is necessary to

establish whether the unsteadiness in the excitation provided by a turbulent wind is compatible with the steady-state harmonic

models considered herein. In addition, as previously noted, a turbulent wind field cannot in general be exactly represented by10

the reduced set of wind states.

To investigate these effects, a 10 minute simulation was performed at 5 m/s mean wind speed with a TI equal to 20%, and

null mean yaw misalignment, upflow, vertical and horizontal shears. At each instant of time, values of the wind parameters were

computed from the wind grid generated with TurbSim (Jonkman and Kilcher, 2012) by fitting in a least-squares sense Eqs. (2)

and (3). Blade load harmonics were extracted from the simulated outputs using the Coleman transformation and filtered with a15

low-pass 6th-order Butterworth filter with a cut-out frequency of 0.14 Hz, in order to remove the remaining 3×Rev harmonic

content in the Coleman-transformed moments. Figure 5 shows a comparison of the harmonics extracted from the simulation

(shown in a thick blue solid line, and here again assumed to represent the ground truth) with those predicted by the second
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order nonlinear model (shown using a thin red solid line), fed with the wind parameters computed from the wind grid. The plot

on the left shows moment mIP
1c , while the one on the right moment mOP

2c .
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Figure 5. Comparison in turbulent wind conditions between measured harmonics (thick solid line) and harmonics predicted with a second

order nonlinear model (thin solid line). Left: in-plane 1×Rev cosine component; right: out-of-plane 2×Rev cosine component.

By looking at the left plot of Fig. 5, it appears that there is an excellent match between predictions and measurements for

the in-plane 1×Rev cosine harmonic. The small delay between the two signals is due to the filter used for removing higher

frequencies. Both linear and nonlinear models yield similarly accurate results also for the sine and out-of-plane components,5

not reported here for brevity. These results show that, by and large, 1×Rev harmonics are primarily influenced by the wind

states used here for parameterizing the wind field, with only small disturbances caused by turbulent fluctuations and blade

dynamic effects. In this sense, 1×Rev harmonics are good candidates for feeding a wind state observer.

On the other hand, the right plot of the same figure shows a completely different behavior of measurements and predictions

for the 2×Rev components in turbulent conditions. It should be remarked that, as previously illustrated in Fig. 4, the model10

is perfectly capable of capturing with good accuracy these higher harmonics in steady wind conditions. The reason for the

very poor results of the turbulent case is due to the fact that small scale turbulent fluctuations in the wind field cause 2×Rev

harmonics that are comparable to, if not larger than, the ones caused by the wind states used for the parameterization. Therefore,

although 2×Rev harmonics carry information on the wind states, this information cannot be separated from the pollution

brought by the smaller-scale wind field fluctuations. In this sense, 2×Rev harmonics are not good candidates for the observation15

of wind states. Based on these results, in the continuation of this work the vector of blade harmonics is limited to the 1×Revs

and it is simply defined as

m=
(
mOP

1c , m
OP
1s , m

IP
1c , m

IP
1s

)T
. (26)
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2.3.7 Wind state estimation

The problem of computing an estimate θE of the wind state vector given a load harmonic vectormM is considered next. Given

the input-output model (10), a measured loadmM can be expressed as

mM =M(θ,V,%) + r, (27)

where r is the measurement error with covarianceR=E
[
rrT

]
. The residual is assumed to be zero-mean, white and Gaussian.5

The residual is due not only to measurement noise, but also to all effects not captured by the model, such as sampling and

discretization errors, unmodeled nonlinearities and turbulence-induced loads. This implies that the assumption of a zero-mean,

white and gaussian noise can be far from real.

The generalized least-squares estimate of θ givenmM is

θE = argmin
θ

((
mM−M(θ,V,%)

)T
R−1

(
mM−M(θ,V,%)

))
. (28)10

Consider now linear model (11a) and assume V to be known. The solution of problem (28) can be worked out analytically as

θE =
(
F (V )TR−1F (V )

)−1
F (V )TR−1(mM−m0). (29)

Vector θE is structurally identifiable (or observable) if matrix F (V )TR−1F (V ) is non singular. The structural identifiability

analysis, which reveals when the estimation problem is well posed and with which accuracy it can be solved, will be analyzed

in Section 3.15

For the nonlinear model (22), the solution of problem (28) involves a nonlinear unconstrained minimization, which was

solved here starting from a suitable initial guess by the Levenberg-Marquardt method (More, 1977). As multiple local solutions

may characterize the nonlinear problem, a global search algorithm or multiple starting points should be used for finding the

optimum. Here again, one must verify observability, as discussed later in Section 3.

Estimator (28) was first characterized in steady wind conditions, and the results of this analysis are shown next. All plots are20

arranged in a similar way: any estimated wind state variable is plotted on the y-axis as a function of its corresponding ground

truth quantity, reported on the x-axis. A black thin solid line indicates the bisector of the plot, representing a perfect match

between the two quantities. Estimates are plotted using markers and thick solid lines for different wind conditions. Clearly, any

deviation from the bisector directly indicates an estimation error.

Figure 6 shows an excerpt of the results obtained with the linear model for different wind conditions at 5 m/s. The estimates25

appear to be of good accuracy for all wind state variables, although some small errors affect the two angles. The reason for

this behavior can be traced back to mild nonlinearities, clearly not captured by the linear model, that affect to a greater extent

angles than shears. Among the wind parameters, the upflow seems to be the least accurate, while the horizontal shear appears

as the most precise. Similar results, not shown here, were obtained for different wind speeds and flow conditions.

The matching improves with the use of the nonlinear model, as reported in Fig. 7. The plots show that all quantities appear30

to be well captured, with a clear improvement in the quality of the results.
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Figure 6. Wind states observed using the linear model for different steady inflow conditions at 5 m/s: yaw misalignment φ at χ= 8 deg and

κh =−0.1 (top left), vertical shear κv at χ= 8 deg and κh =−0.1 (top right), upflow angle χ at φ=−8 deg and κh = −0.1 (bottom left),

horizontal shear κh at χ= 8 deg and φ=−8 deg (bottom right).
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Figure 7. Wind state observed with the nonlinear model for different steady inflow conditions at 5 m/s: yaw misalignment φ at χ= 8 deg

and κh =−0.1 (top left), vertical shear κv at χ= 8 deg and κh = −0.1 (top right), upflow angle χ at φ=−8 deg and κh = −0.1 (bottom

left), horizontal shear κh at χ= 8 deg and φ= −8 deg (bottom right).
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3 A priori observability analysis

The observability of the wind parameters is analyzed next. As one can easily imagine, the level of accuracy of the estimates

strongly depends on the sensitivity of the moments with respect to the to-be-estimated parameters and to the noise in the

measurements.

Assuming a linear model, the real (unknown) wind state vector θR is related to the measured load vectormM as5

mM = FθR +m0 + r. (30)

Inserting (30) into (29), the estimation error εθ is readily derived as

εθ = θE−θR =
(
F TR−1F

)−1

F TR−1r. (31)

The estimate is unbiased, as in fact the expected value of the error E [εθ] is equal to zero when the residual is zero-mean.

Additionally, the covariance of the estimation error Cov[εθ] = E
[
εθεθ

T
]

(Cramer, 1946) writes10

Cov[εθ] =
(
F TR−1F

)−1

. (32)

This expression shows the interplay between noise r and sensitivity F , captured by the term R−
1
2F : the higher the variance

and/or the lower the sensitivity of the measurements with respect to the wind states, the worst the accuracy of the estimates.

The covariance Cov[εθ] expressed by Eq. (32) is typically fully populated, as the errors of the estimates are correlated. To

ease the understanding of the estimation problem, the SVD (Golub and van Loan, 1996) can be used to decouple the estimates.15

In fact, matrixR−
1
2F can be factored as

R−
1
2F =UΣV T , (33)

where U ∈Rm×m, Σ ∈Rm×n and V ∈Rn×n, being m the number of measurements and n the number of wind state vari-

ables. Matrices U and V are orthonormal, i.e. UTU =UUT = I and V TV = V V T = I , whereas Σ = diag(. . . ,1/σi, . . .)

is a diagonal matrix and σi the standard deviation. Inserting Eq. (33) into Eq. (32), the covariance of the estimation error can20

be expressed as

Cov
[
V T εθ

]
=E

[(
V T (θE−θR)

)(
V T (θE−θR)

)T]
=
(
ΣTΣ

)−1

= diag(. . . ,σ2
i , . . .). (34)

This way, the problem is reformulated by the change of variables ξ = V Tθ, where ξ are statistically independent variables

with diagonal covariance. This reformulation simplifies the interpretation of the structural observability of the problem. In fact,

the ith column of matrix V linearly combines the wind parameters, mapping them into a new parameter ξi with variance σ2
i .25

Clearly, a high variance indicates a low level of identifiability of the associated linear combination of wind parameters.

This analysis also provides information on the dependence of loads on wind states. In fact, one can easily show that

∂m

∂ξ
=R

1
2UΣ. (35)
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Therefore, the analysis of U reveals on which linear combination of inflow parameters each load depends the most.

The same analysis can be applied to the nonlinear case, by linearizing Eq. (22) around a specific operating and wind condition

and using F = ∂(FNLθNL)/∂θ = FNL∂θNL/∂θ.

3.1 Results of the a priori analysis

The a priori analysis was applied to the identified input-output models. Three different values of the noise covariance R were5

considered. In the first two cases, all measures were supposed to be uncorrelated and affected by the same noise level, i.e.

R= γ2I , where γ is a positive real number. In the first case, γ was set equal to 0.01mmin, being mmin the minimum of the

load amplitude maxima. In the second case, γ was set to 0.01mmax, being mmax the maximum of the load amplitude maxima.

In the third case, the noise covariance was computed based on the differences between the loads mobs obtained by using the

observation model and the ones measured on the simulation model,msim, i.e.10

Rε =
1

Nexp

Nexp∑

i=1

(mobsi−msimi)(mobsi−msimi)
T
. (36)

For the first case, matrices V and U were computed at a wind speed of 7 m/s, obtaining

V =




∼ 0 ∼ 0 0.55 0.83

∼ 0 ∼ 1 ∼ 0 ∼ 0

∼ 0 ∼ 0 0.83 0.55

∼ 1 ∼ 0 ∼ 0 ∼ 0



, U =




0.11 0.97 0.14 0.18

−0.97 0.11 0.18 −0.14

0.03 0.22 −0.60 −0.77

−0.23 0.02 −0.77 0.60



. (37)

To interpret these results, remember that the wind state vector is defined as θ = (φ, κv, χ, κh)T , whereas the load vector as

m=
(
mOP

1c , m
OP
1s , m

IP
1c , m

IP
1s

)T
.15

The first and second columns of V are related to the horizontal and vertical shears, respectively. Since their maximum

entries approach 1, both parameters can be independently identified. On the other hand, a coupling between the two angles can

be noticed from the third and fourth column: an error in the estimation of one angle will propagate and affect the estimate of

the other. Similar V matrices, leading to the same conclusions, were computed at different wind speeds and different noise

levels γ2.20

To interpret matrix U , consider that rows are associated with entries of the load vector, whereas columns with entries of

the wind state vector. The first column of U shows that the horizontal shear mostly affects the sine components of both out-

and in-plane moments. Similarly, the second column shows that the vertical shear mostly affects the cosine components of

the loads. On the other hand, the third and fourth columns, associated with the angles, do not indicate a predominant effect

on some load components. In fact, all loads are affected by both upflow and yaw misalignment, with the in-plane harmonics25

exhibiting a bit higher sensitivity.

As a side observation, notice also the symmetry between the couples {φ, κv} and {χ, κh}, an effect of the near 90 deg-

symmetry in the definition of the wind parameters and in the response of the machine (see Fig. 1).
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Table 1 reports the expected variances of the wind state estimation errors for the three considered noise variances. It appears

that, as expected, higher noise levels are associated with higher variances of the estimates. In addition, the variance of the angles

appears to be significantly higher than the one of the shears. In fact, angle variances approach and exceed tens of degrees for

the higher noise levels, indicating that instantaneous estimates of these wind states are probably impractical. However, longer

term observation could be possible by time filtering, as discussed and shown later on.5

Table 1. Expected variance of wind state estimates based on the a priori analysis.

Standard deviations 0.01mmin 0.01mmax Rε

σφ[deg] 0.95 26.0 5.9

σκv 1.1e-3 3.0e-2 3.3e-3

σχ[deg] 0.81 22.3 9.0

σκh 1.1e-3 3.0e-2 3.3e-3

Finally, Fig. 8 shows the standard deviations (STD) of the wind parameter estimates with respect to the wind speed, computed

asumingR= γI , with γ = 0.01(mmin +mmax)/2. The plot shows a marked improvement of the quality of the estimates with

wind speed.

Similar results, not shown here for the sake of brevity, were obtained with the nonlinear model.
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Figure 8. Expected standard deviation of the wind state estimates as function of wind speed. Left: standard deviations for angles φ and χ;

right: standard deviations for shears κv and κh.
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3.2 Expected observer behavior

Given the behavior of the linear and nonlinear observers and the results of the SVD-based a priori observability analysis, the

following considerations can be made:

– In general it should be possible to estimate both shears with a satisfactory precision, as their errors are moderate even

for significant measurement noise levels.5

– It is expected that the estimation of both yaw misalignment and upflow angle will be more significantly affected by

measurement noise. Because of this, the estimation of these angles should be accompanied by a suitable filtering action

in order to remove fast fluctuations. This also implies that these angles can only be estimated on longer time horizons

than in the case of shears.

– The observation accuracy should increase with increasing wind speed.10

– The nonlinear model appears to be more accurate than the linear one for the estimation of yaw misalignment and upflow

angles. On the other hand, shears seem to be captured well also by the linear model.

The different expected accuracy in the estimation of shears and angles can be given an even more intuitive explanation.

Consider in fact the blade section depicted in Fig. 9. The relative airflow velocity vector can be decomposed into the component

V⊥ = (1− a)V perpendicular to the rotor disk plane, where a is the local induction factor, and the one V// = Ωr parallel to it,15

being r the section radial position.

𝑉∕∕ = Ω 𝑟

𝑉⊥ = 𝑉(1 − 𝑎)

𝑉𝜅
𝑣

𝑉𝜙

∆𝛼𝜅
𝑣

∆𝛼𝜙

Figure 9. Effects of shear and misalignment changes on sectional angle of attack.

A change of shear will be seen by the blade section mainly as a change of V⊥. On the other hand, a change in misalignment

will induce a change mainly in V//. The figure shows that two equal velocity perturbations ∆V = Vκv = V sin(φ), respectively

perpendicular and parallel to the rotor plane, will induce different changes in the sectional angle of attack. In particular, the

change due to a perpendicular (shear-caused) variation is larger than the one due to a parallel (misalignment-caused) variation.20
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This is also easily shown by considering that the inflow angle is tanζ = V⊥/V//. Hence, for a perturbation ∆V due to

shear variation, the inflow changes as tanζ = (V⊥+∆V )/V//. On the other hand, for a perturbation ∆V due to misalignment

variation, the inflow changes as tanζ = V⊥/(V// + ∆V ). For typical values of V⊥ and V//, Fig. 10 shows the behavior of

tanζ as a function of ∆V . As clearly shown by the plot, for a same perturbation ∆V (say of 1 m/sec, as shown in the figure

by way of example), the ensuing change in inflow angle is larger when the perturbation is due to a change in shear than when5

it is due to a change in misalignment. This implies a similarly larger variation of the sectional angle of attack, and hence of the

loads. In conclusions, one may expect that the rotor response will be more sensitive to variations in shear than in misalignment,

when these two different phenomena produce velocity perturbations of the same magnitude. Due to the rotational symmetry of

the problem, the same conclusions clearly hold true for a variation in horizontal shear, or for a variation of the vertical upflow

angle.10
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Figure 10. Variation of the inflow angle ζ at a blade section, as a function of a perturbation ∆V either in a direction perpendicular (solid

line) or parallel (dashed line) to the rotor plane.

4 Results

After having verified in the previous sections that blade load harmonics carry enough information to infer wind states in

steady conditions, attention is now turned to the dynamic problem. The non-turbulent case is considered first, using fully-

parameterized wind fields with variable-in-time wind states. Next, the turbulent case is considered, using wind fields modeled

by the Kaimal method for different constant mean wind states. Finally, turbulent conditions with variable-in-time mean quan-15

tities are considered.
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4.1 Non-turbulent case with fully-parameterized wind fields

Ideal non-turbulent and fully-parameterized wind fields with time-varying wind states were generated according to Eq. (3),

by independently varying angles φ and χ as well as shears κv and κh. Here and in the following examples, load harmonics

were extracted from the simulated wind turbine response by using the Coleman transformation, followed by filtering with an

8th-order Butterworth filter with cut-out frequency equal to 0.35ftower = 0.105 Hz to remove load oscillations at the tower5

frequency. Finally, inflow conditions were estimated with the proposed observer and compared with the real ones.

Figure 11 shows the results obtained at 4 and 9 m/s, respectively in the left and right plots, using the linear and nonlinear

models. The agreement is generally good as all parameters are well observed by both models. The observed states are affected

by a delay of about 7 seconds, primarily due to the effects of the filter. There are minor differences between the linear and the

nonlinear models, which however are not large enough to allow drawing any conclusions.10
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Figure 11. Wind state observations in non-turbulent wind conditions with variable wind parameters at 4 (left) and 9 m/s (right). Solid thick

blue lines: real wind parameters; dashed thick green lines: observations by the linear model; solid thin red lines: observations by the nonlinear

model.
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4.2 Turbulent case

Different turbulent wind fields were generated using the TurbSim software according to the Kaimal model. The corresponding

inflow conditions, in terms of hub-height wind speed V and wind states θ, were then computed by fitting at each instant of

time the wind state parametrization (1) to the turbulent wind grid over the complete rotor disk. The wind parameters obtained

this way were then used as reference quantities to verify the accuracy of the estimated ones.5

As wind states are inferred from blade loads, which in turn depend on the wind conditions at the location occupied by each

single blade at each time instant, also an alternative way of computing the reference wind conditions was used. In this second

implementation, wind parameters were computed by fitting the wind state parametrization expressed by Eq. (2) and Eq. (3) not

over the complete rotor disk, but only to its portion occupied at that time instant by the three blades. Spanwise weighting was

also used, on account of the non-uniform power extraction characteristics of rotors (Soltani et al., 2013). As the two methods10

do not yield significantly different reference wind states, only the results obtained with the first approach are reported in the

following.

Figures 12 and 13 report the results obtained at 7 and 19 m/s, which belong respectively to regions II and III. Each figure

shows on the left results for a TI equal to 2%, and on the right for the 12% TI case.

These results suggest several possible considerations.15

First, the estimates of both shears κv and κh appear to have in general a high accuracy: their mean values as well as their

rapid oscillations are well captured by both the linear and nonlinear models. Here again, results are affected by a 7 s delay

induced by the filter. For the lower wind speeds and turbulence intensities, the linear and nonlinear observers exhibit a very

similar behavior. However, differences appear at 19 m/s and 12% TI, as shown by Fig. 13 on the right. In fact, between second

250 and second 350 of the simulation, the estimation of the vertical shear provided by the linear model is affected by large20

errors, whereas the nonlinear observer results still remain acceptable.

The good behavior of the shear estimates suggests the possible use of a faster filter in order to reduce the estimation delay.

For example, the delay can be reduced to only 4 s by using a filter cut-out frequency of 0.17 Hz, which corresponds to 1.2

times the rotor frequency at 5 m/s.

On the other hand, estimation of the angles φ and χ does not prove to be as accurate as the one of the shears, as fully expected25

based on the a priori observability study. Mean values are well captured, especially by the nonlinear model, but fluctuations are

missed by both observers.

The general lower quality of the estimates for the angles was previously explained by the a priori analysis, and it is clearly

illustrated a posteriori by the simulation results shown here. Various sources of error may ultimately be responsible for the

oscillations in the estimates shown by the plots, including unmodeled dynamics, rapid pitch motions, or variable rotor speed.30

It is interesting to recall that the steady model (10) appeared well capable of capturing the behavior of the 1×Rev loads also in

turbulent conditions, as clearly illustrated by the results shown in the left plot of Fig. 5. Notwithstanding this apparently more

than satisfactory behavior when used to simulate loads given wind states, the inversion of the model to yield wind states given

loads appears to be more problematic. In fact, because of the general lower level of observability of the angles with respect to

25
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Figure 12. Wind state observations in turbulent wind conditions at 7 m/s for a TI equal to 2% (left) and 12% (right). Solid thick blue lines:

reference wind parameters; dashed thick green lines: observations by the linear model; solid thin red lines: observations by the nonlinear

model.
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Figure 13. Wind state observations in turbulent wind conditions at 19 m/s for a TI equal to 2% (left) and 12% (right). Solid thick blue lines:

reference wind parameters; dashed thick green lines: observations by the linear model; solid thin red lines: observations by the nonlinear

model.
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the shears (see Section 3), errors propagate throughout the solution at a high rate for wind misalignment and upflow, in turn

generating fast fluctuations of the estimates.

It should also be remarked that an additional source of uncertainty is the ground truth. In fact, the presence of turbulent

eddies in the flow implies that the wind field cannot be exactly parameterized by the assumed wind states. Hence, the reference

quantities plotted here should also be considered as only indicative proxies of the actual wind states.5

The observation errors were further analyzed from a statistical standpoint, by generating 5 different turbulent wind field

realizations, and computing means and standard deviations. To eliminate the effects of the delay caused by the filter, which

would have prevented any instantaneous comparison between the reference and observed quantities, reference wind states were

processed with the same filter used for the moment harmonics.

Figure 14 shows the behavior of the standard deviation of the estimation error for the four wind states, as functions of the10

wind speed and for different TI levels. The curves labeled “TI=0%” refer to the non-turbulent fully-parameterized conditions

already described in §4.1. Since a similar behavior characterizes the results of both observers, only those obtained with the

nonlinear model are shown here in order not to clutter the figure.

As expected, the standard deviation increases with TI level. Moreover, in regions II and II 1
2 , accuracy tends to increase for

increasing wind speed, as similarly predicted by the a priori observability analysis. The opposite happens in region III, where15

oscillations in the results are more significant and strongly affect the estimates. This behavior is particularly visible in the

estimation of the angles, as shown in the left plots of Fig. 14

On the other hand, shear errors remain low also at very high TI levels, as illustrated by the right plots of Fig. 14, indicating

that fast good quality shear estimates are possible. In fact, for example, the standard deviation of κv at 7 m/s and 20% TI is

circa 0.055, which means that about 95% of the observer samples have an instantaneous error lower than 0.11.20

The evaluation of the observer performance for the angles deserves a special attention. Looking at the yaw misalignment in

Fig. 14 (top right) –for regions II, II 1
2 and the low region III up to 15 m/s–, the instantaneous error remains within acceptable

bounds for turbulence intensities lower than 5%. In fact, σφ is lower than 1.5 deg, which implies that estimates are affected

by an error lower than 3 deg 95% of the time. On the contrary, the estimation error standard deviation may reach 3, 4 or even

6 deg for the higher turbulence intensities of 12%, 16% and 20%. The maximum error deviation is obtained at 19 m/s for a TI25

of 12%. The same considerations can be derived for the estimation of the upflow angle.

Figure 15 reports the mean observation errors with respect to the wind speed for both the linear and nonlinear observers.

Not unexpectedly, the estimation of the shears is characterized by almost negligible error means. More surprisingly, however,

even the mean errors of the angles are quite low for all conditions, although a mild reduction of accuracy can be observed for

increasing wind speeds. In addition, as previously noted, the nonlinear observer appears to be slightly more accurate than the30

linear one. Finally, it was found that the error means are not significantly influenced by TI.

4.2.1 Evaluation of life-time performance

The previous examples have shown that observed angles are typically affected by spurious oscillations, for the reasons ex-

plained by the a priori analysis. The same examples however have also shown that mean values are typically well captured,
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Figure 14. Standard deviation of the estimation error of yaw misalingment (top left), vertical shear (top right), upflow angle (bottom left),

horizontal shear (bottom right) as functions of wind speed, for varying TI levels. All curves refer to the nonlinear observer results.

and that the amplitude of oscillations is related to TI. This seems to indicate that fast accurate observations of angles are in

general not possible, while observations on longer time windows might still be relatively accurate. By the simple inspection of

temporal responses, it is however not easy to get a clear idea of the actual precision of the observers in turbulent conditions. In

order to provide for a more meaningful indication of the observer accuracy, the “life-time” standard deviation of the observed

states is evaluated in this section. This is computed by weighting the results at each wind speed and TI with the corresponding5

probability distributions at a given site.

To this end, measurements taken at the off-shore platform FINO 1 (FINO) from September 2003 to August 2007 were

considered. Figure 16 shows some statistical metrics of the wind at an altitude over the water line of 80 m, which corresponds

to the hub-height of the wind turbine considered in the present study. The TI percentiles at 90 m were extracted from Fig. 2 of
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Figure 15. Mean estimation error of yaw misalignment (top left), vertical shear (top right), upflow angle (bottom left) and horizontal shear

(bottom right) with respect to wind speed.

Türk and Eimeis (2010), and mapped to the current hub-height by scaling with a factor equal to 1.028, according to Fig. 5.21

of Emeis (2013).

Next, a shifted Weibull probability density function (PDF)Wτ was fitted to the TI for each wind speed. The PDF is defined

as

Wτ (τ, V ) =





α(V )
β(V )

(
(τ−τmin(V ))

β(V )

)α(V )−1

e−
(

(τ−τmin(V ))
β(V )

)α(V )

, τ ≥ τmin(V ),

0, τ < τmin(V ),
(38)5

while its associated cumulative distribution function (CDF) writes

Wτ (τ, V ) =





1− e−
(

(τ−τmin)
β(V )

)α(V )

, τ ≥ τmin(V ),

0, τ < τmin(V ),
(39)
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Figure 16. Minimum value, 10th, 25th, 50th, 75th and 90th TI percentiles as functions of wind speed, at 80 m above the water line at FINO1

from September 2003 to August 2007. Data taken from Türk and Eimeis (2010).

where τ is the TI level and τmin(V ) its minimum value, while α(V ) and β(V ) are the shape and scale parameters, respectively,

of the probability density function. Figure 17 represents the Weibull PDF and CDF at 9 m/s.

Given the probability density function of the observation errorPε, the TI PDFWτ and the wind speed PDFWV , the life-time

standard deviation σLT can be readily computed as

σLT =
1

∫ VCO

VCI
WV (V )dV

VCO∫

VCI

WV (V )




+∞∫

0

Wτ (V,τ)




+∞∫

−∞

εPε(V,τ,ε)dε


dτ


dV, (40)5

where the innermost integral represents the wind-speed-specific and TI-specific standard deviation of the observation error,

σ(V,τ), which was previously computed and reported in Fig. 14. This quantity is then weighted by the probability of each

wind speed and TI values to occur at this specific site, as given in Fig. 16.

Figure 18 shows the wind-speed-specific standard deviations for the yaw misalignment and upflow errors, on the left, and

for the shear errors, on the right, as well as the wind Weibull distribution at FINO1 as functions of wind speed. The picture10

clearly illustrates the fact that both for angles and shears, errors are quite limited for the more probable wind speeds.

Finally, the life-time standard deviations are reported in Table 2. From this point of view, results are clearly quite satisfactory

not only for shears, but also for angles. In fact, although fluctuations pollute the instantaneous observation of these quantities,

their long term metrics are well captured.
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Figure 18. Wind-speed-specific standard deviation of the observation error for angles φ and χ (left) and for shears κv and κh (right). The

wind Weibull distribution is characterized by shape and scale parameters equal to 2.5 and 10, respectively.
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Table 2. Life-time standard deviation and 2-σ bounds of the estimation error for the wind parameters.

Wind parameter
φ

κv
χ

κh
[deg] [deg]

σLT 0.97 0.011 0.84 0.006

2σLT 1.94 0.022 1.68 0.012

4.2.2 Following mean changes in yaw misalignment

The fact that the mean estimation errors of the angles, especially for yaw misalignment, are limited, suggests the use of a

moving average in order to lower the error standard deviation. This way one may capture the slower variations of the means,

while filtering out the faster oscillations. The resulting estimates can be used for slower control actions, as for example yaw

control, or for the slow scale monitoring of parameters of interest.5

To test whether it is indeed possible to follow changes of the mean, large changes in yaw misalignment were simulated.

Turbulent wind fields were generated with TurbSim, and gradually rotated to generate mean wind direction changes from -4

to 4 deg in about 20 seconds. The observed yaw misalignment was filtered with a moving average of variable window length,

on account of the mean wind speed. The results of the observations at 7 m/s for different turbulence levels with and without

moving average are shown in Fig. 19.10

For the very low TI levels shown in the left plot of Fig. 14, both the mean and instantaneous values of yaw misalignment can

be sufficiently well captured even without the use of a filter. On the other hand, with increasing turbulence, spurious oscillations

of the estimates mask the mean wind direction change. However, it appears that the use of a moving average is capable of

eliminating the faster fluctuations, revealing the presence of a change in wind direction. Clearly, higher values of turbulence

require longer filtering windows, with consequently longer time delays. This delayed detection is however compatible with the15

usually rather slow and conservative approach used for yaw control, where the actual realignment of the machine is performed

only when a wind direction change of some significant entity has been observed for a sufficiently long window of time, usually

of many tens of seconds.

As a final remark, the nonlinear observer appears to perform slightly better than the linear one, as more easily visible for low

turbulence conditions.20

5 Conclusions

This paper has presented a method to estimate the wind inflow at the rotor disk of an operating wind turbine. The proposed

method uses the low frequency response of the wind turbine, limited to the 1×Rev harmonics, to infer four wind states rep-

resenting two misalignment angles and two shears. The rotor response is measured by load sensors, which are becoming
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Figure 19. Yaw misalignment for an 8 deg change in wind direction at 7 m/s with 2% (left) and 20% (right) TI. Solid thick blue lines: real

yaw misalignment; dashed thick green lines: estimate by the linear model; solid thin red lines: estimate by the nonlinear model.
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standard equipment on many modern wind turbines. When such sensors are available, the proposed method does not require

any additional hardware and amounts to a simple software upgrade.

An input-output model was formulated to represent the relationship between wind states and load harmonics. The model

was treated as a black box, whose unknown coefficients were estimated by using the simulated response of a wind turbine

implemented in a high-fidelity aeroservoelastic model. The input-output relationship was then inverted in a least-squares sense,5

in order to provide estimates of the wind states when fed with measured load harmonics. The statistical properties of the model

and, in turn, the observability of the wind states were analyzed using the SVD. This a priori analysis highlighted the different

nature of the problem of estimating shears and angles, the former being characterized by a higher level of observability than the

latter. Finally, the proposed observer was analyzed in a wide range of operating conditions in turbulent wind fields of different

characteristics.10

From the results of the present study, the following considerations can be made:

– The behavior of the blade out-of-plane and in-plane load harmonics at 1×Rev are captured well, both in steady and

turbulent conditions, by a linear or second-order nonlinear function of the wind states.

– It is not advisable to include in the model harmonics higher than 1×Rev. In fact, although 2×Rev components are indeed

correlated with wind states, they are also strongly affected by turbulence. In addition, if one uses a simulation model for15

the estimation or synthesis of the load-wind model, it is to be expected that such a model will better capture the 1×Rev

response than the higher harmonics. Therefore, limiting load inputs to the 1×Rev components helps ensure a higher

accuracy of the load-wind model and hence of the estimates.

– Wind states can be estimated from 1×Rev blade harmonics, as these quantities carry enough informational content for

the model to be invertible.20

– An a priori observability analysis shows that the accuracy of the shears is in general superior to the one of the angles.

This is not because of a limit of the present specific formulation, but it is due to the intrinsic sensitivity of angle of attack

changes to wind state changes, which is different for angles and shears.

– Extensive simulations in turbulent conditions have shown that the mean value of the estimation error is in general

significantly low for all states. For example, the mean yaw error is of about 0.5 deg independently of wind speed and TI,25

whereas the vertical shear error is about 0.01.

– Standard deviations of the shears are in general very low even for high TI levels, implying that the observer is capable

of following fast shear fluctuations with good precision.

– Standard deviations for angles are significantly higher, due to their overall lower observability. In general, angle estimates

are polluted by rapid spurious oscillations, due to the amplification of errors through the inverted estimation model. This30

implies that one cannot in general follow rapid variations of the angles, and only observations on longer time scales are

possible.
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– Although polluted by fluctuations, on average even the angle estimates are of a good quality, thanks also to their small

mean errors. An analysis, conducted by taking into account the probability distributions of both wind speed and TI at the

off-shore FINO1 platform in the German Bight, has shown that the expected average error in the angles is below 1 deg,

which appears to be a very interesting result.

– It was shown that, by filtering the estimated yaw misalignment with a moving average, one may track with good accuracy5

significant mean changes in the wind direction, indicating the possible use of this estimate for driving the wind turbine

yaw control system.

The proposed formulation should be extended to consider the possible presence of an individual pitch control (IPC) strategy.

This can be done by including in the load-wind model also the presence of a term depending on pitch load harmonics. As

these quantities are known, they represent further inputs that do not change the overall approach, although the model will10

have additional coefficients that need to be identified. This extension of the formulation has already been tested, and it will be

described in a forthcoming publication.

Nomenclature

m Generic blade moment

t Time15

nk Piecewise linear shape function

q Dynamic pressure

p Order of the nonlinear model

f Frequency

20

B Number of blades

V Wind speed

R Rotor radius

H Hub height

V Variance25

Nobs Number of experiments for model identification

Nnodes Number of nodes for wind speed scheduling

R Real number set

W Weibull probability density function

W Weibull cumulative distribution function30

Pε Probability density function of the observation error

VCI Cut-in wind speed
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VCO Cut-out wind speed

VRP Rated wind speed

h Vector of harmonic amplitudes for signal demodulation

y Output vector5

x State vector

u Input vector

m Vector of moment harmonics

r Measurement error

10

X Demodulation matrix

1 Unitary vector

R Measurement error covariance matrix

U Matrix of left singular vectors

V Matrix of right singular vectors15

I Identity matrix

M Steady-state relation between load harmonics and wind state vector

E[ · ] Expected value

Cov[ · ] Covariance20

% Air density

φ Yaw misalignment angle

χ Upflow angle

κv Vertical shear25

κh Horizontal shear

ψ Azimuth angle

σ Standard deviation

α Shape parameter of the Weibull distribution

β Scale parameter of the Weibull distribution30

τ Turbulence intensity level

ζ Blade section inflow angle

Ω Rotor angular velocity

εθ Wind state observation error35
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ξ Vector of statistically independent wind state variables, V Tθ

θ Wind state vector

Σ Rectangular matrix of singular values

(·)T Transpose5

(·)(i) Quantity related to the ith experiment

(·)(j) Quantity related to the jth blade

(·)k Nodal quantity at the kth node

(·)OP Out-of-plane quantity

(·)IP In-plane quantity10

˙(·) Time derivative, i.e. d · /dt

(·)nc n×Rev cosine amplitude

(·)ns n×Rev sine amplitude

(·)M Measured quantity

(·)E Estimated quantity15

(·)R Real quantity

(·)NL Nonlinear term

BEM Blade element momentum

SVD Singular Value Decomposition20

LiDAR Light detection and ranging

TSR Tip speed ratio

PDF Probability density function

CDF Cumulative distribution function

IPC Individual pitch control25

TI Turbulence intensity

STD Standard deviation
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